AI features based on 3rd-party integrations

Instructions for setting up GitLab Duo features in the local development environment

Required: Install AI gateway

Why: All Duo features route LLM requests through the AI gateway.

How: Follow these instructions to install the AI gateway with GDK. We recommend this route for most users.

You can also install AI gateway by:

  1. Cloning the repository directly.
  2. Running the server locally.

We only recommend this for users who have a specific reason for not running the AI gateway through GDK.

Required: Setup Licenses in GitLab-Rails

Why: GitLab Duo is available to Premium and Ultimate customers only. You likely want an Ultimate license for your GDK. Ultimate gets you access to all GitLab Duo features.

How:

Follow the process to obtain an EE license for your local instance and upload the license.

To verify that the license is applied, go to Admin area > Subscription and check the subscription plan.

Set up and run GDK

Option A: in SaaS (GitLab.com) Mode

Why: Most Duo features are available on GitLab.com first, so running in SaaS mode will ensure that you can access most features.

How:

Run the Rake task to set up Duo features for a group:

GITLAB_SIMULATE_SAAS=1 bundle exec 'rake gitlab:duo:setup[test-group-name]'
gdk restart

Replace test-group-name with the name of any top-level group. Duo will be configured for that group. If the group doesn’t exist, it creates a new one.

Make sure the script succeeds. It prints error messages with links on how to resolve any errors. You can re-run the script until it succeeds.

In SaaS mode, membership to a group with Duo features enabled is what enables many AI features. Make sure that your test user is a member of the group with Duo features enabled (test-group-name).

This Rake task creates Duo Enterprise add-on attached to that group.

In case you need Duo Pro add-on attached, please use:

GITLAB_SIMULATE_SAAS=1 bundle exec 'rake gitlab:duo:setup[test-group-name,duo_pro]'

Duo Pro add-on serves smaller scope of features. Usage of add-on depends on what features you want to use.

Option B: in Self-managed Mode

Why: If you want to test something specific to self-managed, such as Custom Models.

How:

Run the Rake task to set up Duo features for the instance:

GITLAB_SIMULATE_SAAS=0 bundle exec 'rake gitlab:duo:setup_instance'
gdk restart

This Rake task creates Duo Enterprise add-on attached to your instance.

In case you need Duo Pro add-on attached, please use:

GITLAB_SIMULATE_SAAS=0 bundle exec 'rake gitlab:duo:setup_instance[duo_pro]'

Duo Pro add-on serves smaller scope of features. Usage of add-on depends on what features you want to use.

Why: Setting this environment variable will allow the local GitLab instance to issue tokens itself, without syncing with CustomersDot first. With this set, you can skip the CustomersDot setup.

How: The following should be set in the env.runit file in your GDK root:

# <GDK-root>/env.runit

export CLOUD_CONNECTOR_SELF_SIGN_TOKENS=1

You need to restart GDK to apply the change.

If you use CLOUD_CONNECTOR_SELF_SIGN_TOKENS=1, the root/admin user must have a seat assigned to receive a “Code completion test was successful” notification from the health check on the http://localhost:3000/admin/code_suggestions page.

Our customers (production environment) do not need to do that to run a Code Suggestions health check.

Why: you’ve completed all of the setup steps, now it’s time to confirm that GitLab Duo is actually working.

How:

After the setup is complete, you can test clients in GitLab-Rails to see if it can correctly reach to AI gateway:

  1. Run gdk start.
  2. Login to Rails console with gdk rails console.
  3. Talk to a model:

    # Talk to Anthropic model
    Gitlab::Llm::Anthropic::Client.new(User.first, unit_primitive: 'duo_chat').complete(prompt: "\n\nHuman: Hi, How are you?\n\nAssistant:")
    
    # Talk to Vertex AI model
    Gitlab::Llm::VertexAi::Client.new(User.first, unit_primitive: 'documentation_search').text_embeddings(content: "How can I create an issue?")
    
    # Test `/v1/chat/agent` endpoint
    Gitlab::Llm::Chain::Requests::AiGateway.new(User.first).request({prompt: [{role: "user", content: "Hi, how are you?"}]})
    
note
See this doc for registering unit primitives in Cloud Connector.

Optional: Enable authentication and authorization in AI gateway

Why: The AI gateway has authentication and authorization flow to verify if clients have permission to access the features. Auth is enforced in any live environments hosted by GitLab infra team. You may want to test this flow in your local development environment.

note
In development environments (for example: GDK), this process is disabled by default.

To enable authorization checks, set AIGW_AUTH__BYPASS_EXTERNAL to false in the application setting file (<GDK-root>/gitlab-ai-gateway/.env) in AI gateway.

Option 1: Use your GitLab instance as a provider

Why: this is the simplest method of testing authentication and reflects our setup on GitLab.com.

How: Assuming that you are running the AI gateway with GDK, apply the following configuration to GDK:

# <GDK-root>/env.runit

export GITLAB_SIMULATE_SAAS=1

Update the application settings file in AI gateway:

# <GDK-root>/gitlab-ai-gateway/.env

AIGW_AUTH__BYPASS_EXTERNAL=false
AIGW_GITLAB_URL=<your-gdk-url>

and gdk restart.

Option 2: Use your customersDot instance as a provider

Why: CustomersDot setup is required when you want to test or update functionality related to cloud licensing or if you are running GDK in non-SaaS mode.

note
This setup is challenging. There is an issue for discussing how to make it easier to test the customersDot integration locally. Until that is addressed, this setup process is time consuming and should be avoided if possible.

If you need to get customersDot working for your local GitLab Rails instance for any reason, reach out to #s_fulfillment_engineering in Slack. For questions around the integration of CDot with other systems to deliver AI use cases, reach out to #g_cloud_connector. assistance.

Help

Tips for local development

  1. When responses are taking too long to appear in the user interface, consider restarting Sidekiq by running gdk restart rails-background-jobs. If that doesn’t work, try gdk kill and then gdk start.
  2. Alternatively, bypass Sidekiq entirely and run the service synchronously. This can help with debugging errors as GraphQL errors are now available in the network inspector instead of the Sidekiq logs. To do that, temporarily alter the perform_for method in Llm::CompletionWorker class by changing perform_async to perform_inline.

Feature development (Abstraction Layer)

Feature flags

Apply the following feature flags to any AI feature work:

  • A general flag (ai_duo_chat_switch) that applies to all GitLab Duo Chat features. It’s enabled by default.
  • A general flag (ai_global_switch) that applies to all other AI features. It’s enabled by default.
  • A flag specific to that feature. The feature flag name must be different than the licensed feature name.

See the feature flag tracker epic for the list of all feature flags and how to use them.

Push feature flags to AI gateway

You can push feature flags to AI gateway. This is helpful to gradually rollout user-facing changes even if the feature resides in AI gateway. See the following example:

# Push a feature flag state to AI gateway.
Gitlab::AiGateway.push_feature_flag(:new_prompt_template, user)

Later, you can use the feature flag state in AI gateway in the following way:

from ai_gateway.feature_flags import is_feature_enabled

# Check if the feature flag "new_prompt_template" is enabled.
if is_feature_enabled('new_prompt_template'):
  # Build a prompt from the new prompt template
else:
  # Build a prompt from the old prompt template

IMPORTANT: At the cleaning up step, remove the feature flag in AI gateway repository before removing the flag in GitLab-Rails repository. If you clean up the flag in GitLab-Rails repository at first, the feature flag in AI gateway will be disabled immediately as it’s the default state, hence you might encounter a surprising behavior.

IMPORTANT: Cleaning up the feature flag in AI gateway will immediately distribute the change to all GitLab instances, including GitLab.com, GitLab Self-Managed, and GitLab Dedicated.

Technical details:

  • When push_feature_flag runs on an enabled feature flag, the name of the flag is cached in the current context, which is later attached to the x-gitlab-enabled-feature-flags HTTP header when GitLab-Sidekiq/Rails sends requests to AI gateway.
  • When frontend clients (for example, VS Code Extension or LSP) request a User JWT (UJWT) for direct AI gateway communication, GitLab returns:

    • Public headers (including x-gitlab-enabled-feature-flags).
    • The generated UJWT (1-hour expiration).

Frontend clients must regenerate UJWT upon expiration. Backend changes such as feature flag updates through ChatOps render the header values to become stale. These header values are refreshed at the next UJWT generation.

Similarly, we also have push_frontend_feature_flag to push feature flags to frontend.

GraphQL API

To connect to the AI provider API using the Abstraction Layer, use an extendable GraphQL API called aiAction. The input accepts key/value pairs, where the key is the action that needs to be performed. We only allow one AI action per mutation request.

Example of a mutation:

mutation {
  aiAction(input: {summarizeComments: {resourceId: "gid://gitlab/Issue/52"}}) {
    clientMutationId
  }
}

As an example, assume we want to build an “explain code” action. To do this, we extend the input with a new key, explainCode. The mutation would look like this:

mutation {
  aiAction(
    input: {
      explainCode: { resourceId: "gid://gitlab/MergeRequest/52", code: "foo() { console.log() }" }
    }
  ) {
    clientMutationId
  }
}

The GraphQL API then uses the Anthropic Client to send the response.

How to receive a response

The API requests to AI providers are handled in a background job. We therefore do not keep the request alive and the Frontend needs to match the request to the response from the subscription.

caution
Determining the right response to a request can cause problems when only userId and resourceId are used. For example, when two AI features use the same userId and resourceId both subscriptions will receive the response from each other. To prevent this interference, we introduced the clientSubscriptionId.

To match a response on the aiCompletionResponse subscription, you can provide a clientSubscriptionId to the aiAction mutation.

  • The clientSubscriptionId should be unique per feature and within a page to not interfere with other AI features. We recommend to use a UUID.
  • Only when the clientSubscriptionId is provided as part of the aiAction mutation, it will be used for broadcasting the aiCompletionResponse.
  • If the clientSubscriptionId is not provided, only userId and resourceId are used for the aiCompletionResponse.

As an example mutation for summarizing comments, we provide a randomId as part of the mutation:

mutation {
  aiAction(
    input: {
      summarizeComments: { resourceId: "gid://gitlab/Issue/52" }
      clientSubscriptionId: "randomId"
    }
  ) {
    clientMutationId
  }
}

In our component, we then listen on the aiCompletionResponse using the userId, resourceId and clientSubscriptionId ("randomId"):

subscription aiCompletionResponse(
  $userId: UserID
  $resourceId: AiModelID
  $clientSubscriptionId: String
) {
  aiCompletionResponse(
    userId: $userId
    resourceId: $resourceId
    clientSubscriptionId: $clientSubscriptionId
  ) {
    content
    errors
  }
}

The subscription for Chat behaves differently.

To not have many concurrent subscriptions, you should also only subscribe to the subscription once the mutation is sent by using skip().

Current abstraction layer flow

The following graph uses VertexAI as an example. You can use different providers.

scheduled
calling
response
GitLab frontend
AiAction GraphQL mutation
Llm::ExecuteMethodService
One of services, for example: Llm::GenerateSummaryService
AI worker:Llm::CompletionWorker
::Gitlab::Llm::Completions::Factory
`::Gitlab::Llm::VertexAi::Completions::...` class using `::Gitlab::Llm::Templates::...` class
Gitlab::Llm::VertexAi::Client
::Gitlab::Llm::GraphqlSubscriptionResponseService
GraphqlTriggers.ai_completion_response
::GitlabSchema.subscriptions.trigger

Reuse the existing AI components for multiple models

We thrive optimizing AI components, such as prompt, input/output parser, tools/function-calling, for each LLM, however, diverging the components for each model could increase the maintenance overhead. Hence, it’s generally advised to reuse the existing components for multiple models as long as it doesn’t degrade a feature quality. Here are the rules of thumbs:

  1. Iterate on the existing prompt template for multiple models. Do NOT introduce a new one unless it causes a quality degradation for a particular model.
  2. Iterate on the existing input/output parsers and tools/functions-calling for multiple models. Do NOT introduce a new one unless it causes a quality degradation for a particular model.
  3. If a quality degradation is detected for a particular model, the shared component should be diverged for the particular model.

An example of this case is that we can apply Claude specific CoT optimization to the other models such as Mixtral as long as it doesn’t cause a quality degradation.

Monitoring

Security

Refer to the secure coding guidelines for Artificial Intelligence (AI) features.