Guidelines for reusing abstractions

As GitLab has grown, different patterns emerged across the codebase. Service classes, serializers, and presenters are just a few. These patterns made it easy to reuse code, but at the same time make it easy to accidentally reuse the wrong abstraction in a particular place.

Why these guidelines are necessary

Code reuse is good, but sometimes this can lead to shoehorning the wrong abstraction into a particular use case. This in turn can have a negative impact on maintainability, the ability to easily debug problems, or even performance.

An example would be to use ProjectsFinder in IssuesFinder to limit issues to those belonging to a set of projects. While initially this may seem like a good idea, both classes provide a very high level interface with very little control. This means that IssuesFinder may not be able to produce a better optimized database query, as a large portion of the query is controlled by the internals of ProjectsFinder.

To work around this problem, you would use the same code used by ProjectsFinder, instead of using ProjectsFinder itself directly. This allows you to compose your behavior better, giving you more control over the behavior of the code.

To illustrate, consider the following code from IssuableFinder#projects:

return @projects = project if project?

projects =
  if current_user && params[:authorized_only].presence && !current_user_related?
    current_user.authorized_projects
  elsif group
    finder_options = { include_subgroups: params[:include_subgroups], only_owned: true }
    GroupProjectsFinder.new(group: group, current_user: current_user, options: finder_options).execute
  else
    ProjectsFinder.new(current_user: current_user).execute
  end

@projects = projects.with_feature_available_for_user(klass, current_user).reorder(nil)

Here we determine what projects to scope our data to, using three different approaches. When a group is specified, we use GroupProjectsFinder to retrieve all the projects of that group. On the surface this seems harmless: it is easy to use, and we only need two lines of code.

In reality, things can get hairy very quickly. For example, the query produced by GroupProjectsFinder may start out simple. Over time more and more functionality is added to this (high level) interface. Instead of only affecting the cases where this is necessary, it may also start affecting IssuableFinder in a negative way. For example, the query produced by GroupProjectsFinder may include unnecessary conditions. Since we’re using a finder here, we can’t easily opt-out of that behavior. We could add options to do so, but then we’d need as many options as we have features. Every option adds two code paths, which means that for four features we have to cover 8 different code paths.

A much more reliable (and pleasant) way of dealing with this, is to simply use the underlying bits that make up GroupProjectsFinder directly. This means we may need a little bit more code in IssuableFinder, but it also gives us much more control and certainty. This means we might end up with something like this:

return @projects = project if project?

projects =
  if current_user && params[:authorized_only].presence && !current_user_related?
    current_user.authorized_projects
  elsif group
    current_user
      .owned_groups(subgroups: params[:include_subgroups])
      .projects
      .any_additional_method_calls
      .that_might_be_necessary
  else
    current_user
      .projects_visible_to_user
      .any_additional_method_calls
      .that_might_be_necessary
  end

@projects = projects.with_feature_available_for_user(klass, current_user).reorder(nil)

This is just a sketch, but it shows the general idea: we would use whatever the GroupProjectsFinder and ProjectsFinder finders use under the hoods.

End goal

The guidelines in this document are meant to foster better code reuse, by clearly defining what can be reused where, and what to do when you can not reuse something. Clearly separating abstractions makes it harder to use the wrong one, makes it easier to debug the code, and (hopefully) results in fewer performance problems.

Abstractions

Now let’s take a look at the various abstraction levels available, and what they can (or cannot) reuse. For this we can use the following table, which defines the various abstractions and what they can (not) reuse:

AbstractionService classesFindersPresentersSerializersModel instance methodModel class methodsActive RecordWorker
Controller/API endpointYesYesYesYesYesNoNoNo
Service classYesYesNoNoYesNoNoYes
FinderNoNoNoNoYesYesNoNo
PresenterNoYesNoNoYesYesNoNo
SerializerNoYesNoNoYesYesNoNo
Model class methodNoNoNoNoYesYesYesNo
Model instance methodNoYesNoNoYesYesYesYes
WorkerYesYesNoNoYesNoNoYes

Controllers

Everything in app/controllers.

Controllers should not do much work on their own, instead they simply pass input to other classes and present the results.

API endpoints

Everything in lib/api (the REST API) and app/graphql (the GraphQL API).

API endpoints have the same abstraction level as controllers.

Service classes

Everything that resides in app/services.

Services should consider inheriting from:

  • BaseContainerService for services scoped by container (project or group)
  • BaseProjectService for services scoped to projects
  • BaseGroupService for services scoped to groups

or, create a new base class and update the list above.

Legacy classes inherited from BaseService for historical reasons.

In Service classes the use of execute and #execute is preferred over call and #call.

Model properties should be passed to the constructor in a params hash, and will be assigned directly.

To pass extra parameters (which need to be processed, and are not model properties), include an options hash in the constructor and store it in an instance variable:

# container: Project, or Group
# current_user: Current user
# params: Model properties from the controller, already allowlisted with strong parameters
# options: Configuration for this service, can be any of the following:
#   notify: Whether to send a notifcation to the current user
#   cc: Email address to copy when sending a notification 
def initialize(container:, current_user: nil, params: {}, options: {})
  super(container, current_user, params)
  @options = options
end

View the initial discussion and further discussion.

Classes that are not service objects should be created elsewhere, such as in lib.

ServiceResponse

Service classes usually have an execute method, which can return a ServiceResponse. You can use ServiceResponse.success and ServiceResponse.error to return a response in execute method.

In a successful case:

response = ServiceResponse.success(message: 'Branch was deleted')

response.success? # => true
response.error? # => false
response.status # => :success
response.message # => 'Branch was deleted'

In a failed case:

response = ServiceResponse.error(message: 'Unsupported operation')

response.success? # => false
response.error? # => true
response.status # => :error
response.message # => 'Unsupported operation'

An additional payload can also be attached:

response = ServiceResponse.success(payload: { issue: issue })

response.payload[:issue] # => issue

Error responses can also specify the failure reason which can be used by the caller to understand the nature of the failure. The caller, if an HTTP endpoint, could translate the reason symbol into an HTTP status code:

response = ServiceResponse.error(
  message: 'Job is in a state that cannot be retried',
  reason: :job_not_retrieable)

if response.success?
  head :ok
if response.reason == :job_not_retriable
  head :unprocessable_entity
else
  head :bad_request
end

For common failures such as resource :not_found or operation :forbidden, we could leverage the Rails HTTP status symbols as long as they are sufficiently specific for the domain logic involved. For other failures use domain-specific reasons whenever possible.

For example: :job_not_retriable, :duplicate_package, :merge_request_not_mergeable.

Finders

Everything in app/finders, typically used for retrieving data from a database.

Finders can not reuse other finders in an attempt to better control the SQL queries they produce.

Finders’ execute method should return ActiveRecord::Relation. Exceptions can be added to spec/support/finder_collection_allowlist.yml. See #298771 for more details.

Presenters

Everything in app/presenters, used for exposing complex data to a Rails view, without having to create many instance variables.

See the documentation for more information.

Serializers

Everything in app/serializers, used for presenting the response to a request, typically in JSON.

Models

Classes and modules in app/models represent domain concepts that encapsulate both data and behavior.

These classes can interact directly with a data store (like ActiveRecord models) or can be a thin wrapper (Plain Old Ruby Objects) on top of ActiveRecord models to express a richer domain concept.

Entities and Value Objects that represent domain concepts are considered domain models.

Some examples:

Model class methods

These are class methods defined by GitLab itself, including the following methods provided by Active Record:

  • find
  • find_by_id
  • delete_all
  • destroy
  • destroy_all

Any other methods such as find_by(some_column: X) are not included, and instead fall under the “Active Record” abstraction.

Model instance methods

Instance methods defined on Active Record models by GitLab itself. Methods provided by Active Record are not included, except for the following methods:

  • save
  • update
  • destroy
  • delete

Active Record

The API provided by Active Record itself, such as the where method, save, delete_all, and so on.

Worker

Everything in app/workers.

Use SomeWorker.perform_async or SomeWorker.perform_in to schedule Sidekiq jobs. Never directly invoke a worker using SomeWorker.new.perform.