- When to use batched background migrations
- How batched background migrations work
-
How to
- Generate a batched background migration
- Enqueue a batched background migration
- Finalize a batched background migration
- Deleting batched background migration code
- Re-queue batched background migrations
- Stop and remove batched background migrations
- Use job arguments
- Use filters
- Access data for multiple databases
- Batch over non-distinct columns
- Calculate overall time estimation of a batched background migration
- Cleaning up a batched background migration
- Add indexes to support batched background migrations
- Execute a particular batch on the database testing pipeline
- Establish dependencies
- Managing
- Batched background migrations for EE-only features
- Debug
- Testing
- Best practices
- Examples
Batched background migrations
Batched background migrations should be used to perform data migrations whenever a migration exceeds the time limits in our guidelines. For example, you can use batched background migrations to migrate data that’s stored in a single JSON column to a separate table instead.
When to use batched background migrations
Use a batched background migration when you migrate data in tables containing so many rows that the process would exceed the time limits in our guidelines if performed using a regular Rails migration.
- Batched background migrations should be used when migrating data in high-traffic tables.
- Batched background migrations may also be used when executing numerous single-row queries for every item on a large dataset. Typically, for single-record patterns, runtime is largely dependent on the size of the dataset. Split the dataset accordingly, and put it into background migrations.
- Don’t use batched background migrations to perform schema migrations.
Background migrations can help when:
- Migrating events from one table to multiple separate tables.
- Populating one column based on JSON stored in another column.
- Migrating data that depends on the output of external services. (For example, an API.)
Notes
- If the batched background migration is part of an important upgrade, it must be announced in the release post. Discuss with your Project Manager if you’re unsure if the migration falls into this category.
- You should use the generator to create batched background migrations, so that required files are created by default.
How batched background migrations work
Batched background migrations (BBM) are subclasses of
Gitlab::BackgroundMigration::BatchedMigrationJob
that define a perform
method.
As the first step, a regular migration creates a batched_background_migrations
record with the BBM class and the required arguments. By default,
batched_background_migrations
is in an active state, and those are picked up
by the Sidekiq worker to execute the actual batched migration.
All migration classes must be defined in the namespace Gitlab::BackgroundMigration
. Place the files
in the directory lib/gitlab/background_migration/
.
Execution mechanism
Batched background migrations are picked from the queue in the order they are enqueued. Multiple migrations are fetched and executed in parallel, as long they are in active state and do not target the same database table. The default number of migrations processed in parallel is 2, for GitLab.com this limit is configured to 4. Once migration is picked for execution, a job is created for the specific batch. After each job execution, migration’s batch size may be increased or decreased, based on the performance of the last 20 jobs.
Soon as a worker is available, the BBM is processed by the runner.
Idempotence
Batched background migrations are executed in a context of a Sidekiq process. The usual Sidekiq rules apply, especially the rule that jobs should be small and idempotent. Ensure that in the case where your migration job is retried, data integrity is guaranteed.
See Sidekiq best practices guidelines for more details.
Migration optimization
After each job execution, a verification takes place to check if the migration can be optimized. The optimization underlying mechanic is based on the concept of time efficiency. It calculates the exponential moving average of time efficiencies for the last N jobs and updates the batch size of the batched background migration to its optimal value.
This mechanism, however, makes it hard for us to provide an accurate estimation for total execution time of the migration when using the database migration pipeline.
We are discussing the ways to fix this problem in this issue
Job retry mechanism
The batched background migrations retry mechanism ensures that a job is executed again in case of failure. The following diagram shows the different stages of our retry mechanism:
-
MAX_ATTEMPTS
is defined in theGitlab::Database::BackgroundMigration
class. -
can_split?
is defined in theGitlab::Database::BatchedJob
class.
Failed batched background migrations
The whole batched background migration is marked as failed
(/chatops run batched_background_migrations status MIGRATION_ID
shows
the migration as failed
) if any of the following is true:
- There are no more jobs to consume, and there are failed jobs.
- More than half of the jobs failed since the background migration was started.
Throttling batched migrations
Because batched migrations are update heavy and there have been incidents due to the heavy load from these migrations while the database was underperforming, a throttling mechanism exists to mitigate future incidents.
These database indicators are checked to throttle a migration. Upon receiving a stop signal, the migration is paused for a set time (10 minutes):
- WAL queue pending archival crossing the threshold.
- Active autovacuum on the tables on which the migration works on.
- Patroni apdex SLI dropping below the SLO.
- WAL rate crossing the threshold.
There is an ongoing effort to add more indicators to further enhance the database health check framework. For more details, see epic 7594.
Isolation
Batched background migrations must be isolated and cannot use application code (for example,
models defined in app/models
except the ApplicationRecord
classes).
Because these migrations can take a long time to run, it’s possible
for new versions to deploy while the migrations are still running.
Depending on migrated data
Unlike a regular or a post migration, waiting for the next release is not enough to guarantee that the data was fully migrated.
That means that you shouldn’t depend on the data until the BBM is finished. If having 100% of the data migrated is a requirement,
then, the ensure_batched_background_migration_is_finished
helper can be used to guarantee that the migration was finished and the
data fully migrated. (See an example).
How to
Generate a batched background migration
The custom generator batched_background_migration
scaffolds necessary files and
accepts table_name
, column_name
, and feature_category
as arguments. When
choosing the column_name
, ensure that you are using a column type that can be iterated over distinctly,
preferably the table’s primary key. The table will be iterated over based on the column defined here.
For more information, see Batch over non-distinct columns.
Usage:
bundle exec rails g batched_background_migration my_batched_migration --table_name=<table-name> --column_name=<column-name> --feature_category=<feature-category>
This command creates the following files:
db/post_migrate/20230214231008_queue_my_batched_migration.rb
spec/migrations/20230214231008_queue_my_batched_migration_spec.rb
lib/gitlab/background_migration/my_batched_migration.rb
spec/lib/gitlab/background_migration/my_batched_migration_spec.rb
Enqueue a batched background migration
Queueing a batched background migration should be done in a post-deployment
migration. Use this queue_batched_background_migration
example, queueing the
migration to be executed in batches. Replace the class name and arguments with the values
from your migration:
queue_batched_background_migration(
JOB_CLASS_NAME,
TABLE_NAME,
JOB_ARGUMENTS,
JOB_INTERVAL
)
JOB_CLASS_NAME
.Make sure the newly-created data is either migrated, or saved in both the old and new version upon creation. Removals in turn can be handled by defining foreign keys with cascading deletes.
Finalize a batched background migration
Finalizing a batched background migration is done by calling
ensure_batched_background_migration_is_finished
, after at-least, one required stop from queuing it.
This ensures a smooth upgrade process for self-managed instances.
It is important to finalize all batched background migrations when it is safe to do so. Leaving around old batched background migration is a form of technical debt that needs to be maintained in tests and in application behavior. It is important to note that you cannot depend on any batched background migration being completed until after it is finalized.
We recommend that batched background migrations are finalized after all of the following conditions are met:
- The batched background migration is completed on GitLab.com
- The batched background migration was added in or before the last required stop. For example if 17.8 is a required stop and the migration was added in 17.7, the finalizing migration can be added in 17.9.
The ensure_batched_background_migration_is_finished
call must exactly match
the migration that was used to enqueue it. Pay careful attention to:
- The job arguments: Needs to exactly match or it will not find the queued migration
- The
gitlab_schema
: Needs to exactly match or it will not find the queued migration. Even if thegitlab_schema
of the table has changed fromgitlab_main
togitlab_main_cell
in the meantime you must finalize it withgitlab_main
if that’s what was used when queueing the batched background migration.
When finalizing a batched background migration you also need to update the
finalized_by
in the corresponding db/docs/batched_background_migrations
file. The value should be the timestamp/version of the migration you added to
finalize it. The schema version of the RSpec tests
associated with the migration should also be set to this version to avoid having the tests fail due
to future schema changes.
See the below Examples for specific details on what the actual migration code should be.
skip_early_finalization_validation: true
option to skip this check.Deleting batched background migration code
Once a batched background migration has completed, is finalized and has not been re-queued,
the migration code in lib/gitlab/background_migration/
and its associated tests can be deleted after the next required stop following
the finalization.
Here is an example scenario:
- 17.2 and 17.5 are required stops.
- In 17.0 the batched background migration is queued.
- In 17.3 the migration may be finalized, provided that it’s completed in GitLab.com.
- In 17.6 the code related to the migration may be deleted.
Batched background migration code is routinely deleted when migrations are squashed.
Re-queue batched background migrations
A batched background migration might need to be re-run for one of several reasons:
- The migration contains a bug (example).
- The migration cleaned up data but the data became de-normalized again due to a bypass in application logic (example).
- The batch size of the original migration causes the migration to fail (example).
To requeue a batched background migration, you must:
- No-op the contents of the
#up
and#down
methods of the original migration file. Otherwise, the batched background migration is created, deleted, then created again on systems that are upgrading multiple patch releases at once. - Add a new post-deployment migration that re-runs the batched background migration.
- In the new post-deployment migration, delete the existing batched background
migration using the
delete_batched_background_migration
method at the start of the#up
method to ensure that any existing runs are cleaned up. - Update the
db/docs/batched_background_migration/*.yml
file from the original migration to include information about the requeue.
Example
Original Migration:
# frozen_string_literal: true
class QueueResolveVulnerabilitiesForRemovedAnalyzers < Gitlab::Database::Migration[2.2]
milestone '17.3'
MIGRATION = "ResolveVulnerabilitiesForRemovedAnalyzers"
def up
# no-op because there was a bug in the original migration, which has been
# fixed by
end
def down
# no-op because there was a bug in the original migration, which has been
# fixed in https://gitlab.com/gitlab-org/gitlab/-/merge_requests/162527
end
end
Requeued migration:
# frozen_string_literal: true
class RequeueResolveVulnerabilitiesForRemovedAnalyzers < Gitlab::Database::Migration[2.2]
milestone '17.4'
restrict_gitlab_migration gitlab_schema: :gitlab_main
MIGRATION = "ResolveVulnerabilitiesForRemovedAnalyzers"
DELAY_INTERVAL = 2.minutes
BATCH_SIZE = 10_000
SUB_BATCH_SIZE = 100
def up
# Clear previous background migration execution from QueueResolveVulnerabilitiesForRemovedAnalyzers
delete_batched_background_migration(MIGRATION, :vulnerability_reads, :id, [])
queue_batched_background_migration(
MIGRATION,
:vulnerability_reads,
:id,
job_interval: DELAY_INTERVAL,
batch_size: BATCH_SIZE,
sub_batch_size: SUB_BATCH_SIZE
)
end
def down
delete_batched_background_migration(MIGRATION, :vulnerability_reads, :id, [])
end
end
Batched migration dictionary:
The milestone
and queued_migration_version
should be the ones of requeued migration (in this example: RequeueResolveVulnerabilitiesForRemovedAnalyzers).
---
migration_job_name: ResolveVulnerabilitiesForRemovedAnalyzers
description: Resolves all detected vulnerabilities for removed analyzers.
feature_category: static_application_security_testing
introduced_by_url: https://gitlab.com/gitlab-org/gitlab/-/merge_requests/162691
milestone: '17.4'
queued_migration_version: 20240814085540
finalized_by: # version of the migration that finalized this BBM
Stop and remove batched background migrations
A batched background migration in running state can be stopped and removed for several reasons:
- When the migration is no longer relevant or required as the product use case changed.
- The migration has to be superseded with another migration with a different logic.
To stop and remove an inprogress batched background migration, you must:
- In Release N, No-op the contents of the
#up
and#down
methods of the scheduling database migration.
class BackfillNamespaceType < Gitlab::Database::Migration[2.1]
# Reason why we don't need the BBM anymore. E.G: This BBM is no longer needed because it will be superseded by another BBM with different logic.
def up; end
def down; end
end
- In Release N, add a regular migration, to delete the existing batched migration. Delete the existing batched background migration using the
delete_batched_background_migration
method at the start of the#up
method to ensure that any existing runs are cleaned up.
class CleanupBackfillNamespaceType < Gitlab::Database::Migration[2.1]
MIGRATION = "MyMigrationClass"
DELAY_INTERVAL = 2.minutes
BATCH_SIZE = 50_000
restrict_gitlab_migration gitlab_schema: :gitlab_main
def up
delete_batched_background_migration(MIGRATION, :vulnerabilities, :id, [])
end
def down
delete_batched_background_migration(MIGRATION, :vulnerabilities, :id, [])
end
end
- In Release N, also delete the migration class file (
lib/gitlab/background_migration/my_batched_migration.rb
) and its specs.
All the above steps can be implemented in a single MR.
Use job arguments
BatchedMigrationJob
provides the job_arguments
helper method for job classes to define the job arguments they need.
Batched migrations scheduled with queue_batched_background_migration
must use the helper to define the job arguments:
queue_batched_background_migration(
'CopyColumnUsingBackgroundMigrationJob',
TABLE_NAME,
'name', 'name_convert_to_text',
job_interval: DELAY_INTERVAL
)
queue_batched_background_migration
raises an error.In this example, copy_from
returns name
, and copy_to
returns name_convert_to_text
:
class CopyColumnUsingBackgroundMigrationJob < BatchedMigrationJob
job_arguments :copy_from, :copy_to
operation_name :update_all
def perform
from_column = connection.quote_column_name(copy_from)
to_column = connection.quote_column_name(copy_to)
assignment_clause = "#{to_column} = #{from_column}"
each_sub_batch do |relation|
relation.update_all(assignment_clause)
end
end
end
Use filters
By default, when creating background jobs to perform the migration, batched background migrations
iterate over the full specified table. This iteration is done using the
PrimaryKeyBatchingStrategy
. If the table has 1000 records
and the batch size is 100, the work is batched into 10 jobs. For illustrative purposes,
EachBatch
is used like this:
# PrimaryKeyBatchingStrategy
Namespace.each_batch(of: 100) do |relation|
relation.where(type: nil).update_all(type: 'User') # this happens in each background job
end
Using a composite or partial index to iterate a subset of the table
When applying additional filters, it is important to ensure they are properly
covered by an index
to optimize EachBatch
performance.
In the below examples we need an index on (type, id)
or id WHERE type IS NULL
to support the filters. See
the EachBatch
documentation for more information.
If you have a suitable index and you want to iterate only a subset of the table
you can apply a where
clause before the each_batch
like:
# Works well if there is an index like either of:
# - `id WHERE type IS NULL`
# - `(type, id)`
# Does not work well otherwise.
Namespace.where(type: nil).each_batch(of: 100) do |relation|
relation.update_all(type: 'User')
end
An advantage of this approach is that you get consistent batch sizes. But it is
only suitable where there is an index that matches the where
clauses as well
as the batching strategy.
BatchedMigrationJob
provides a scope_to
helper method to apply additional filters and achieve this:
-
Create a new migration job class that inherits from
BatchedMigrationJob
and defines the additional filter:class BackfillNamespaceType < BatchedMigrationJob # Works well if there is an index like either of: # - `id WHERE type IS NULL` # - `(type, id)` # Does not work well otherwise. scope_to ->(relation) { relation.where(type: nil) } operation_name :update_all feature_category :source_code_management def perform each_sub_batch do |sub_batch| sub_batch.update_all(type: 'User') end end end
For EE migrations that definescope_to
, ensure the module extendsActiveSupport::Concern
. Otherwise, records are processed without taking the scope into consideration. -
In the post-deployment migration, enqueue the batched background migration:
class BackfillNamespaceType < Gitlab::Database::Migration[2.1] MIGRATION = 'BackfillNamespaceType' DELAY_INTERVAL = 2.minutes restrict_gitlab_migration gitlab_schema: :gitlab_main def up queue_batched_background_migration( MIGRATION, :namespaces, :id, job_interval: DELAY_INTERVAL ) end def down delete_batched_background_migration(MIGRATION, :namespaces, :id, []) end end
Access data for multiple databases
Background migration contrary to regular migrations does have access to multiple databases
and can be used to efficiently access and update data across them. To properly indicate
a database to be used it is desired to create ActiveRecord model inline the migration code.
Such model should use a correct ApplicationRecord
depending on which database the table is located. As such usage of ActiveRecord::Base
is disallowed as it does not describe a explicitly database to be used to access given table.
# good
class Gitlab::BackgroundMigration::ExtractIntegrationsUrl
class Project < ::ApplicationRecord
self.table_name = 'projects'
end
class Build < ::Ci::ApplicationRecord
self.table_name = 'ci_builds'
end
end
# bad
class Gitlab::BackgroundMigration::ExtractIntegrationsUrl
class Project < ActiveRecord::Base
self.table_name = 'projects'
end
class Build < ActiveRecord::Base
self.table_name = 'ci_builds'
end
end
Similarly the usage of ActiveRecord::Base.connection
is disallowed and needs to be
replaced preferably with the usage of model connection.
# good
Project.connection.execute("SELECT * FROM projects")
# acceptable
ApplicationRecord.connection.execute("SELECT * FROM projects")
# bad
ActiveRecord::Base.connection.execute("SELECT * FROM projects")
Batch over non-distinct columns
The default batching strategy provides an efficient way to iterate over primary key columns. However, if you need to iterate over columns where values are not unique, you must use a different batching strategy.
The LooseIndexScanBatchingStrategy
batching strategy uses a special version of EachBatch
to provide efficient and stable iteration over the distinct column values.
This example shows a batched background migration where the issues.project_id
column is used as
the batching column.
Database post-migration:
class ProjectsWithIssuesMigration < Gitlab::Database::Migration[2.1]
MIGRATION = 'BatchProjectsWithIssues'
INTERVAL = 2.minutes
BATCH_SIZE = 5000
SUB_BATCH_SIZE = 500
restrict_gitlab_migration gitlab_schema: :gitlab_main
disable_ddl_transaction!
def up
queue_batched_background_migration(
MIGRATION,
:issues,
:project_id,
job_interval: INTERVAL,
batch_size: BATCH_SIZE,
batch_class_name: 'LooseIndexScanBatchingStrategy', # Override the default batching strategy
sub_batch_size: SUB_BATCH_SIZE
)
end
def down
delete_batched_background_migration(MIGRATION, :issues, :project_id, [])
end
end
Implementing the background migration class:
module Gitlab
module BackgroundMigration
class BatchProjectsWithIssues < Gitlab::BackgroundMigration::BatchedMigrationJob
include Gitlab::Database::DynamicModelHelpers
operation_name :backfill_issues
def perform
distinct_each_batch do |batch|
project_ids = batch.pluck(batch_column)
# do something with the distinct project_ids
end
end
end
end
end
scope_to
are ignored by LooseIndexScanBatchingStrategy
and distinct_each_batch
.Calculate overall time estimation of a batched background migration
It’s possible to estimate how long a BBM takes to complete. GitLab already provides an estimation through the db:gitlabcom-database-testing
pipeline.
This estimation is built based on sampling production data in a test environment and represents the max time that the migration could take and, not necessarily,
the actual time that the migration takes. In certain scenarios, estimations provided by the db:gitlabcom-database-testing
pipeline may not be enough to
calculate all the singularities around the records being migrated, making further calculations necessary. As it made necessary, the formula
interval * number of records / max batch size
can be used to determine an approximate estimation of how long the migration takes.
Where interval
and max batch size
refer to options defined for the job, and the total tuple count
is the number of records to be migrated.
Cleaning up a batched background migration
Because background migrations can take a long time, you can’t immediately clean things up after queueing them. For example, you can’t drop a column used in the migration process, as jobs would fail. You must add a separate post-deployment migration in a future release that finishes any remaining jobs before cleaning things up. (For example, removing a column.)
To migrate the data from column foo
(containing a big JSON blob) to column bar
(containing a string), you would:
- Release A:
- Create a migration class that performs the migration for a row with a given ID.
- Update new rows using one of these techniques:
- Create a new trigger for copy operations that don’t need application logic.
- Handle this operation in the model/service as the records are created or updated.
- Create a new custom background job that updates the records.
- Queue the batched background migration for all existing rows in a post-deployment migration.
- Release B:
- Add a post-deployment migration that checks if the batched background migration is completed.
- Deploy code so that the application starts using the new column and stops to update new records.
- Remove the old column.
Bumping the import/export version may be required, if importing a project from a prior version of GitLab requires the data to be in the new format.
Add indexes to support batched background migrations
Sometimes it is necessary to add a new or temporary index to support a batched background migration. To do this, create the index in a post-deployment migration that precedes the post-deployment migration that queues the background migration.
See the documentation for adding database indexes for additional information about some cases that require special attention to allow the index to be used directly after creation.
Execute a particular batch on the database testing pipeline
Let’s assume that a batched background migration failed on a particular batch on GitLab.com and you want to figure out which query failed and why. At the moment, we don’t have a good way to retrieve query information (especially the query parameters) and rerunning the entire migration with more logging would be a long process.
Fortunately you can leverage our database migration pipeline to rerun a particular batch with additional logging and/or fix to see if it solves the problem.
For an example see Draft: Test PG::CardinalityViolation
fix but make sure to read the entire section.
To do that, you need to:
- Find the batch
start_id
andend_id
- Create a regular migration
- Apply a workaround for our migration helpers (optional)
- Start the database migration pipeline
Find the batch start_id
and end_id
You should be able to find those in Kibana.
Create a regular migration
Schedule the batch in the up
block of a regular migration:
def up
instance = Gitlab::BackgroundMigration::YourBackgroundMigrationClass.new(
start_id: <batch start_id>,
end_id: <batch end_id>,
batch_table: <table name>,
batch_column: <batching column>,
sub_batch_size: <sub batch size>,
pause_ms: <miliseconds between batches>,
job_arguments: <job arguments if any>,
connection: connection
)
instance.perform
end
def down
# no-op
end
Apply a workaround for our migration helpers (optional)
If your batched background migration touches tables from a schema other than the one you specified by using restrict_gitlab_migration
helper (example: the scheduling migration has restrict_gitlab_migration gitlab_schema: :gitlab_main
but the background job uses tables from the :gitlab_ci
schema) then the migration will fail. To prevent that from happening you must to monkey patch database helpers so they don’t fail the testing pipeline job:
- Add the schema names to
RestrictGitlabSchema
diff --git a/lib/gitlab/database/migration_helpers/restrict_gitlab_schema.rb b/lib/gitlab/database/migration_helpers/restrict_gitlab_schema.rb
index b8d1d21a0d2d2a23d9e8c8a0a17db98ed1ed40b7..912e20659a6919f771045178c66828563cb5a4a1 100644
--- a/lib/gitlab/database/migration_helpers/restrict_gitlab_schema.rb
+++ b/lib/gitlab/database/migration_helpers/restrict_gitlab_schema.rb
@@ -55,7 +55,7 @@ def unmatched_schemas
end
def allowed_schemas_for_connection
- Gitlab::Database.gitlab_schemas_for_connection(connection)
+ Gitlab::Database.gitlab_schemas_for_connection(connection) << :gitlab_ci
end
end
end
- Add the schema names to
RestrictAllowedSchemas
diff --git a/lib/gitlab/database/query_analyzers/restrict_allowed_schemas.rb b/lib/gitlab/database/query_analyzers/restrict_allowed_schemas.rb
index 4ae3622479f0800c0553959e132143ec9051898e..d556ec7f55adae9d46a56665ce02de782cb09f2d 100644
--- a/lib/gitlab/database/query_analyzers/restrict_allowed_schemas.rb
+++ b/lib/gitlab/database/query_analyzers/restrict_allowed_schemas.rb
@@ -79,7 +79,7 @@ def restrict_to_dml_only(parsed)
tables = self.dml_tables(parsed)
schemas = self.dml_schemas(tables)
- if (schemas - self.allowed_gitlab_schemas).any?
+ if (schemas - (self.allowed_gitlab_schemas << :gitlab_ci)).any?
raise DMLAccessDeniedError, \
"Select/DML queries (SELECT/UPDATE/DELETE) do access '#{tables}' (#{schemas.to_a}) " \
"which is outside of list of allowed schemas: '#{self.allowed_gitlab_schemas}'. " \
Start the database migration pipeline
Create a Draft merge request with your changes and trigger the manual db:gitlabcom-database-testing
job.
Establish dependencies
In some instances, migrations depended on the completion of previously enqueued BBMs. If the BBMs are still running, the dependent migration fails. For example: introducing an unique index on a large table can depend on the previously enqueued BBM to handle any duplicate records.
The following process has been configured to make dependencies more evident while writing a migration.
- Version of the migration that queued the BBM is stored in batched_background_migrations table and in BBM dictionary file.
-
DEPENDENT_BATCHED_BACKGROUND_MIGRATIONS
constant is added (commented by default) in each migration file. To establish the dependency, addqueued_migration_version
of the dependent BBMs. If not, remove the commented line. -
Migration::UnfinishedDependencies
cop complains if the dependent BBMs are not yet finished. It determines whether they got finished by looking up thefinalized_by
key in the BBM dictionary.
Example:
# db/post_migrate/20231113120650_queue_backfill_routes_namespace_id.rb
class QueueBackfillRoutesNamespaceId < Gitlab::Database::Migration[2.1]
MIGRATION = 'BackfillRouteNamespaceId'
restrict_gitlab_migration gitlab_schema: :gitlab_main
...
...
def up
queue_batched_background_migration(
MIGRATION,
...
)
end
end
# This depends on the finalization of QueueBackfillRoutesNamespaceId BBM
class AddNotNullToRoutesNamespaceId < Gitlab::Database::Migration[2.1]
DEPENDENT_BATCHED_BACKGROUND_MIGRATIONS = ["20231113120650"]
def up
add_not_null_constraint :routes, :namespace_id
end
def down
remove_not_null_constraint :routes, :namespace_id
end
end
Managing
chatops
integration, which is limited to GitLab team members only.List batched background migrations
To list the batched background migrations in the system, run this command:
/chatops run batched_background_migrations list
This command supports the following options:
- Database selection:
-
--database DATABASE_NAME
: Connects to the given database:-
main
: Uses the main database (default). -
ci
: Uses the CI database.
-
-
- Environment selection:
-
--dev
: Uses thedev
environment. -
--staging
: Uses thestaging
environment. -
--staging_ref
: Uses thestaging_ref
environment. -
--production
: Uses theproduction
environment (default).
-
Output example:
created_at
(DESC).Monitor the progress and status of a batched background migration
To see the status and progress of a specific batched background migration, run this command:
/chatops run batched_background_migrations status MIGRATION_ID
This command supports the following options:
- Database selection:
-
--database DATABASE_NAME
: Connects to the given database:-
main
: Uses the main database (default) -
ci
: Uses the CI database
-
-
- Environment selection:
-
--dev
: Uses thedev
environment. -
--staging
: Uses thestaging
environment. -
--staging_ref
: Uses thestaging_ref
environment. -
--production
: Uses theproduction
environment (default).
-
Output example:
Progress
represents the percentage of the background migration that has been completed.
Definitions of the batched background migration states:
-
Active: Either:
- Ready to be picked by the runner.
- Running batched jobs.
- Finalizing: Running batched jobs.
- Failed: Failed batched background migration.
- Finished: Completed batched background migration.
- Paused: Not visible to the runner.
Pause a batched background migration
If you want to pause a batched background migration, you need to run the following command:
/chatops run batched_background_migrations pause MIGRATION_ID
This command supports the following options:
- Database selection:
-
--database DATABASE_NAME
: Connects to the given database:-
main
: Uses the main database (default). -
ci
: Uses the CI database.
-
-
- Environment selection:
-
--dev
: Uses thedev
environment. -
--staging
: Uses thestaging
environment. -
--staging_ref
: Uses thestaging_ref
environment. -
--production
: Uses theproduction
environment (default).
-
Output example:
active
batched background migrations.Resume a batched background migration
If you want to resume a batched background migration, you need to run the following command:
/chatops run batched_background_migrations resume MIGRATION_ID
This command supports the following options:
- Database selection:
-
--database DATABASE_NAME
: Connects to the given database:-
main
: Uses the main database (default). -
ci
: Uses the CI database.
-
-
- Environment selection:
-
--dev
: Uses thedev
environment. -
--staging
: Uses thestaging
environment. -
--staging_ref
: Uses thestaging_ref
environment. -
--production
: Uses theproduction
environment (default).
-
Output example:
active
batched background migrationsEnable or disable background migrations
In extremely limited circumstances, a GitLab administrator can disable either or both of these feature flags:
execute_background_migrations
execute_batched_migrations_on_schedule
These flags are enabled by default. Disable them only as a last resort to limit database operations in special circumstances, like database host maintenance.
execute_background_migrations
or execute_batched_migrations_on_schedule
feature flag,
GitLab upgrades might fail and data loss might occur.Batched background migrations for EE-only features
All the background migration classes for EE-only features should be present in GitLab FOSS. For this purpose, create an empty class for GitLab FOSS, and extend it for GitLab EE as explained in the guidelines for implementing Enterprise Edition features.
You can use the generator to generate an EE-only migration scaffold by passing
--ee-only
flag when generating a new batched background migration.
Debug
Viewing failure error logs
You can view failures in two ways:
- Via GitLab logs:
-
After running a batched background migration, if any jobs fail, view the logs in Kibana. View the production Sidekiq log and filter for:
json.new_state: failed
json.job_class_name: <Batched Background Migration job class name>
json.job_arguments: <Batched Background Migration job class arguments>
-
Review the
json.exception_class
andjson.exception_message
values to help understand why the jobs failed. -
Remember the retry mechanism. Having a failure does not mean the job failed. Always check the last status of the job.
-
-
Via database:
- Get the batched background migration
CLASS_NAME
. -
Execute the following query in the PostgreSQL console:
SELECT migration.id, migration.job_class_name, transition_logs.exception_class, transition_logs.exception_message FROM batched_background_migrations as migration INNER JOIN batched_background_migration_jobs as jobs ON jobs.batched_background_migration_id = migration.id INNER JOIN batched_background_migration_job_transition_logs as transition_logs ON transition_logs.batched_background_migration_job_id = jobs.id WHERE transition_logs.next_status = '2' AND migration.job_class_name = "CLASS_NAME";
- Get the batched background migration
Testing
Writing tests is required for:
- The batched background migrations’ queueing migration.
- The batched background migration itself.
- A cleanup migration.
The :migration
and schema: :latest
RSpec tags are automatically set for
background migration specs. Refer to the
Testing Rails migrations
style guide.
Remember that before
and after
RSpec hooks
migrate your database down and up. These hooks can result in other batched background
migrations being called. Using spy
test doubles with
have_received
is encouraged, instead of using regular test doubles, because
your expectations defined in a it
block can conflict with what is
called in RSpec hooks. Refer to issue #35351
for more details.
Best practices
- Know how much data you’re dealing with.
- Make sure the batched background migration jobs are idempotent.
- Confirm the tests you write are not false positives.
- If the data being migrated is critical and cannot be lost, the clean-up migration must also check the final state of the data before completing.
- Discuss the numbers with a database specialist. The migration may add more pressure on DB than you expect. Measure on staging, or ask someone to measure on production.
- Know how much time is required to run the batched background migration.
-
Be careful when silently rescuing exceptions inside job classes. This may lead to jobs being marked as successful, even in a failure scenario.
# good def perform each_sub_batch do |sub_batch| sub_batch.update_all(name: 'My Name') end end # acceptable def perform each_sub_batch do |sub_batch| sub_batch.update_all(name: 'My Name') rescue Exception => error logger.error(message: error.message, class: error.class) raise end end # bad def perform each_sub_batch do |sub_batch| sub_batch.update_all(name: 'My Name') rescue Exception => error logger.error(message: error.message, class: self.class.name) end end
Examples
Routes use-case
The routes
table has a source_type
field that’s used for a polymorphic relationship.
As part of a database redesign, we’re removing the polymorphic relationship. One step of
the work is migrating data from the source_id
column into a new singular foreign key.
Because we intend to delete old rows later, there’s no need to update them as part of the
background migration.
-
Start by using the generator to create batched background migration files:
bundle exec rails g batched_background_migration BackfillRouteNamespaceId --table_name=routes --column_name=id --feature_category=source_code_management
-
Update the migration job (subclass of
BatchedMigrationJob
) to copysource_id
values tonamespace_id
:class Gitlab::BackgroundMigration::BackfillRouteNamespaceId < BatchedMigrationJob # For illustration purposes, if we were to use a local model we could # define it like below, using an `ApplicationRecord` as the base class # class Route < ::ApplicationRecord # self.table_name = 'routes' # end operation_name :update_all feature_category :source_code_management def perform each_sub_batch( batching_scope: -> (relation) { relation.where("source_type <> 'UnusedType'") } ) do |sub_batch| sub_batch.update_all('namespace_id = source_id') end end end
Job classes inherit fromBatchedMigrationJob
to ensure they are correctly handled by the batched migration framework. Any subclass ofBatchedMigrationJob
is initialized with the necessary arguments to execute the batch, and a connection to the tracking database. -
Create a database migration that adds a new trigger to the database. Example:
class AddTriggerToRoutesToCopySourceIdToNamespaceId < Gitlab::Database::Migration[2.1] FUNCTION_NAME = 'example_function' TRIGGER_NAME = 'example_trigger' def up execute(<<~SQL) CREATE OR REPLACE FUNCTION #{FUNCTION_NAME}() RETURNS trigger LANGUAGE plpgsql AS $$ BEGIN NEW."namespace_id" = NEW."source_id" RETURN NEW; END; $$; CREATE TRIGGER #{TRIGGER_NAME}() AFTER INSERT OR UPDATE ON routes FOR EACH ROW EXECUTE FUNCTION #{FUNCTION_NAME}(); SQL end def down drop_trigger(TRIGGER_NAME, :routes) drop_function(FUNCTION_NAME) end end
-
Update the created post-deployment migration with required delay and batch sizes:
class QueueBackfillRoutesNamespaceId < Gitlab::Database::Migration[2.1] MIGRATION = 'BackfillRouteNamespaceId' DELAY_INTERVAL = 2.minutes BATCH_SIZE = 1000 SUB_BATCH_SIZE = 100 restrict_gitlab_migration gitlab_schema: :gitlab_main def up queue_batched_background_migration( MIGRATION, :routes, :id, job_interval: DELAY_INTERVAL, batch_size: BATCH_SIZE, sub_batch_size: SUB_BATCH_SIZE ) end def down delete_batched_background_migration(MIGRATION, :routes, :id, []) end end
# db/docs/batched_background_migrations/backfill_route_namespace_id.yml --- migration_job_name: BackfillRouteNamespaceId description: Copies source_id values from routes to namespace_id feature_category: source_code_management introduced_by_url: "https://mr_url" milestone: 16.6 queued_migration_version: 20231113120650 finalized_by: # version of the migration that ensured this bbm
When queuing a batched background migration, you need to restrict the schema to the database where you make the actual changes. In this case, we are updatingroutes
records, so we setrestrict_gitlab_migration gitlab_schema: :gitlab_main
. If, however, you need to perform a CI data migration, you would setrestrict_gitlab_migration gitlab_schema: :gitlab_ci
.After deployment, our application: - Continues using the data as before. - Ensures that both existing and new data are migrated.
-
Add a new post-deployment migration that checks that the batched background migration is complete. Also update
finalized_by
attribute in BBM dictionary with the version of this migration.class FinalizeBackfillRouteNamespaceId < Gitlab::Database::Migration[2.1] MIGRATION = 'BackfillRouteNamespaceId' disable_ddl_transaction! restrict_gitlab_migration gitlab_schema: :gitlab_main def up ensure_batched_background_migration_is_finished( job_class_name: MIGRATION, table_name: :routes, column_name: :id, job_arguments: [], finalize: true ) end def down # no-op end end
# db/docs/batched_background_migrations/backfill_route_namespace_id.yml --- migration_job_name: BackfillRouteNamespaceId description: Copies source_id values from routes to namespace_id feature_category: source_code_management introduced_by_url: "https://mr_url" milestone: 16.6 queued_migration_version: 20231113120650 finalized_by: 20231115120912
If the batched background migration is not finished, the system will execute the batched background migration inline. If you don’t want to see this behavior, you need to passfinalize: false
.If the application does not depend on the data being 100% migrated (for instance, the data is advisory, and not mission-critical), then you can skip this final step. This step confirms that the migration is completed, and all of the rows were migrated.
-
Add a database migration to remove the trigger.
class RemoveNamepaceIdTriggerFromRoutes < Gitlab::Database::Migration[2.1] FUNCTION_NAME = 'example_function' TRIGGER_NAME = 'example_trigger' def up drop_trigger(TRIGGER_NAME, :routes) drop_function(FUNCTION_NAME) end def down # Should reverse the trigger and the function in the up method of the migration that added it end end
After the batched migration is completed, you can safely depend on the
data in routes.namespace_id
being populated.