Namespaces
Namespaces are containers for projects and associated resources. A Namespace
is instantiated through its subclasses of Group
, ProjectNamespace
, and UserNamespace
.
A User
has one UserNamespace
, and can be a member of many Namespaces
.
Group
exists in a recursive hierarchical relationship. Groups
have many ProjectNamespaces
which parent one Project
.
Querying namespaces
There is a set of methods provided to query the namespace hierarchy. The methods produce standard Rails ActiveRecord::Relation
objects.
The methods can be split into two similar halves. One set of methods operate on a Namespace object, while the other set operate as composable Namespace scopes.
By their nature, the object methods will operate within a single Namespace
hierarchy, while the scopes can span hierarchies.
The following is a non-exhaustive list of methods to query Namespace
hierarchies.
Root namespaces
The root is the top most Namespace
in the hierarchy. A root has a nil
parent_id
.
Namespace.where(...).roots
namespace_object.root_ancestor
Descendant namespaces
The descendants of a namespace are its children, their children, and so on.
We can return ourself and our descendants through self_and_descendants
.
Namespace.where(...).self_and_descendants
namespace_object.self_and_descendants
We can return only our descendants excluding ourselves:
Namespace.where(...).self_and_descendants(include_self: false)
namespace_object.descendants
We could not name the scope method .descendants
because we would override the Object
method of the same name.
It can be more efficient to return the descendant IDs instead of the whole record:
Namespace.where(...).self_and_descendant_ids
Namespace.where(...).self_and_descendant_ids(include_self: false)
namespace_object.self_and_descendant_ids
namespace_object.descendant_ids
Ancestor namespaces
The ancestors of a namespace are its parent, its parent’s parent, and so on.
We can return ourself and our ancestors through self_and_ancestors
.
Namespace.where(...).self_and_ancestors
namespace_object.self_and_ancestors
We can return only our ancestors excluding ourselves:
Namespace.where(...).self_and_ancestors(include_self: false)
namespace_object.ancestors
We could not name the scope method .ancestors
because we would override the Module
method of the same name.
It can be more efficient to return the ancestor ids instead of the whole record:
Namespace.where(...).self_and_ancstor_ids
Namespace.where(...).self_and_ancestor_ids(include_self: false)
namespace_object.self_and_ancestor_ids
namespace_object.ancestor_ids
Hierarchies
A Namespace hierarchy is a Namespace
, its ancestors, and its descendants.
We can query a namespace hierarchy:
Namespace.where(...).self_and_hierarchy
namespace_object.self_and_hierarchy
Recursive queries
The queries above are known as the linear queries because they use the namespaces.traversal_ids
column to perform standard SQL queries instead of recursive CTE queries.
A set of legacy recursive queries are also accessible if needed:
Namespace.where(...).recursive_self_and_descendants
Namespace.where(...).recursive_self_and_descendants(include_self: false)
Namespace.where(...).recursive_self_and_descendant_ids
Namespace.where(...).recursive_self_and_descendant_ids(include_self: false)
Namespace.where(...).recursive_self_and_ancestors
Namespace.where(...).recursive_self_and_ancestors(include_self: false)
Namespace.where(...).recursive_self_and_ancstor_ids
Namespace.where(...).recursive_self_and_ancestor_ids(include_self: false)
Namespace.where(...).recursive_self_and_hierarchy
namespace_object.recursive_root_ancestor
namespace_object.recursive_self_and_descendants
namespace_object.recursive_descendants
namespace_object.recursive_self_and_descendant_ids
namespace_object.recursive_descendant_ids
namespace_object.recursive_self_and_ancestors
namespace_object.recursive_ancestors
namespace_object.recursive_self_and_ancestor_ids
namespace_object.recursive_ancestor_ids
namespace_object.recursive_self_and_hierarchy
Search using trie data structure
Namespaces::Traversal::TrieNode
implements a trie data structure to efficiently search within
namespaces.traveral_ids
hierarchy for a set of Namespaces.
traversal_ids = Namespace.where(...).map(&:traversal_ids)
# contains [9970, 123] and [9970, 456]
trie = Namespaces::Traversal::TrieNode.build(traversal_ids)
trie.prefix_search([9970]) # returns [[9970, 123], [9970, 456]]
trie.covered?([9970]) # returns false
trie.covered?([9970, 123]) # returns true
trie.covered?([9970, 123, 789]) # returns true
Namespace query implementation
The linear queries are executed using the namespaces.traversal_ids
array column. Each array represents an ordered set of Namespace
IDs from the root Namespace
to the current Namespace
.
Given the scenario:
The traversal_ids
for Namespace
A.A.B
would be [A, A.A, A.A.B]
.
The traversal_ids
have some useful properties to keep in mind if working in this area:
- The root of every
Namespace
is provided bytraversal_ids[1]
. Note that PostgreSQL array indexes begin at1
. - The ID of the current
Namespace
is provided bytraversal_ids[array_length(traversal_ids, 1)]
. - The
Namespace
ancestors are represented by thetraversal_ids
. - A
Namespace
’straversal_ids
are a subset of their descendantstraversal_ids
. ANamespace
withtraversal_ids = [1,2,3]
will have descendants that all start with[1,2,3,...]
. - PostgreSQL arrays are ordered such that
[1] < [1,1] < [2]
.
Using these properties we find the root
and ancestors
are already provided for by traversal_ids
.
With the object descendant queries we lean on the @>
array operator which will test inclusion of an array inside another array.
The @>
operator has been found to be quite slow as the search space grows. Another method is used for scope queries which tend to have larger search spaces.
With scope queries we combine comparison operators with the array ordering property.
All descendants of a Namespace
with traversal_ids = [1,2,3]
have traversal_ids
that are greater than [1,2,3]
but less than [1,2,4]
.
In this example [1,2,3]
and [1,2,4]
are siblings, and [1,2,4]
is the next sibling after [1,2,3]
. A SQL function is provided to find the next sibling of a traversal_ids
called next_traversal_ids_sibling
.
gitlabhq_development=# select next_traversal_ids_sibling(ARRAY[1,2,3]);
next_traversal_ids_sibling
----------------------------
{1,2,4}
(1 row)
We then build descendant linear query scopes using comparison operators:
WHERE namespaces.traversal_ids > ARRAY[1,2,3]
AND namespaces.traversal_ids < next_traversal_ids_sibling(ARRAY[1,2,3])
Superset
Namespace
queries are prone to returning duplicate results. For example, consider a query to find descendants of A
and A.A
:
namespaces = Namespace.where(name: ['A', 'A.A'])
namespaces.self_and_descendants
=> A.A, A.A.A, A.A.B, A.B, A.B.A, A.B.B
Searching for the descendants of both A
and A.A
is unnecessary because A.A
is already a descendant of A
.
In extreme cases this can create excessive I/O leading to poor performance.
Redundant Namespaces
are eliminated from a query if a Namespace
ID
in the traversal_ids
attribute matches an ID
belonging to another Namespace
in the set of Namespaces
being queried.
A match of this condition signifies that an ancestor exists in the set of Namespaces
being queried, and the current Namespace
is therefore redundant.
This optimization will result in much better performance of edge cases that would otherwise be very slow.