Database Load Balancing

Version history

With Database Load Balancing, read-only queries can be distributed across multiple PostgreSQL nodes to increase performance.

This functionality is provided natively in GitLab Rails and Sidekiq where they can be configured to balance their database read queries in a round-robin approach, without any external dependencies:

Requirements to enable Database Load Balancing

To enable Database Load Balancing, make sure that:

  • The HA Postgres setup has one or more secondary nodes replicating the primary.
  • Each Postgres node is connected with the same credentials and on the same port.

For Omnibus GitLab, you also need PgBouncer configured on each PostgreSQL node to pool all load-balanced connections when configuring a multi-node setup.

Configuring Database Load Balancing

Database Load Balancing can be configured in one of two ways:

  • (Recommended) Hosts: a list of PostgreSQL hosts.
  • Service Discovery: a DNS record that returns a list of PostgreSQL hosts.

Hosts

To configure a list of hosts, add the gitlab_rails['db_load_balancing'] setting into the gitlab.rb file in the GitLab Rails / Sidekiq nodes for each environment you want to balance.

For example, on an environment that has PostgreSQL running on the hosts host1.example.com, host2.example.com and host3.example.com and reachable on the same port configured with gitlab_rails['db_port']:

  1. On each GitLab Rails / Sidekiq node, edit /etc/gitlab/gitlab.rb and add the following line:
  gitlab_rails['db_load_balancing'] = { 'hosts' => ['host1.example.com', 'host2.example.com', `host3.example.com`] }
  1. Save the file and reconfigure GitLab.

Service Discovery

Introduced in GitLab 11.0.

Service discovery allows GitLab to automatically retrieve a list of PostgreSQL hosts to use. It periodically checks a DNS A record, using the IPs returned by this record as the addresses for the secondaries. For service discovery to work, all you need is a DNS server and an A record containing the IP addresses of your secondaries.

When using Omnibus GitLab the provided Consul service works as a DNS server and returns PostgreSQL addresses via the postgresql-ha.service.consul record. For example:

  1. On each GitLab Rails / Sidekiq node, edit /etc/gitlab/gitlab.rb and add the following:
  gitlab_rails['db_load_balancing'] = { 'discover' => {
      'nameserver' => 'localhost'
      'record' => 'postgresql-ha.service.consul'
      'record_type' => 'A'
      'port' => '8600'
      'interval' => '60'
      'disconnect_timeout' => '120'
    }
  }
  1. Save the file and reconfigure GitLab for the changes to take effect.
Option Description Default
nameserver The nameserver to use for looking up the DNS record. localhost
record The record to look up. This option is required for service discovery to work.  
record_type Optional record type to look up, this can be either A or SRV (GitLab 12.3 and later) A
port The port of the nameserver. 8600
interval The minimum time in seconds between checking the DNS record. 60
disconnect_timeout The time in seconds after which an old connection is closed, after the list of hosts was updated. 120
use_tcp Lookup DNS resources using TCP instead of UDP false

If record_type is set to SRV, then GitLab continues to use round-robin algorithm and ignores the weight and priority in the record. Since SRV records usually return hostnames instead of IPs, GitLab needs to look for the IPs of returned hostnames in the additional section of the SRV response. If no IP is found for a hostname, GitLab needs to query the configured nameserver for ANY record for each such hostname looking for A or AAAA records, eventually dropping this hostname from rotation if it can’t resolve its IP.

The interval value specifies the minimum time between checks. If the A record has a TTL greater than this value, then service discovery honors said TTL. For example, if the TTL of the A record is 90 seconds, then service discovery waits at least 90 seconds before checking the A record again.

When the list of hosts is updated, it might take a while for the old connections to be terminated. The disconnect_timeout setting can be used to enforce an upper limit on the time it takes to terminate all old database connections.

Handling Stale Reads

Introduced in GitLab 10.3.

To prevent reading from an outdated secondary the load balancer checks if it is in sync with the primary. If the data is recent enough, the secondary is used, otherwise it is ignored. To reduce the overhead of these checks we only perform them at certain intervals.

There are three configuration options that influence this behavior:

Option Description Default
max_replication_difference The amount of data (in bytes) a secondary is allowed to lag behind when it hasn’t replicated data for a while. 8 MB
max_replication_lag_time The maximum number of seconds a secondary is allowed to lag behind before we stop using it. 60 seconds
replica_check_interval The minimum number of seconds we have to wait before checking the status of a secondary. 60 seconds

The defaults should be sufficient for most users.

To configure these options with a hosts list, use the following example:

gitlab_rails['db_load_balancing'] = {
  'hosts' => ['host1.example.com', 'host2.example.com', `host3.example.com`]
  'max_replication_difference' => 16777216 # 16 MB
  'max_replication_lag_time' => 30
  'replica_check_interval' => 30
}

Logging

The load balancer logs various events in database_load_balancing.log, such as

  • When a host is marked as offline
  • When a host comes back online
  • When all secondaries are offline
  • When a read is retried on a different host due to a query conflict

The log is structured with each entry a JSON object containing at least:

  • An event field useful for filtering.
  • A human-readable message field.
  • Some event-specific metadata. For example, db_host
  • Contextual information that is always logged. For example, severity and time.

For example:

{"severity":"INFO","time":"2019-09-02T12:12:01.728Z","correlation_id":"abcdefg","event":"host_online","message":"Host came back online","db_host":"111.222.333.444","db_port":null,"tag":"rails.database_load_balancing","environment":"production","hostname":"web-example-1","fqdn":"gitlab.example.com","path":null,"params":null}

Implementation Details

Balancing queries

Read-only SELECT queries balance among all the given hosts. Everything else (including transactions) executes on the primary. Queries such as SELECT ... FOR UPDATE are also executed on the primary.

Prepared statements

Prepared statements don’t work well with load balancing and are disabled automatically when load balancing is enabled. This shouldn’t impact response timings.

Primary sticking

After a write has been performed, GitLab sticks to using the primary for a certain period of time, scoped to the user that performed the write. GitLab reverts back to using secondaries when they have either caught up, or after 30 seconds.

Failover handling

In the event of a failover or an unresponsive database, the load balancer tries to use the next available host. If no secondaries are available the operation is performed on the primary instead.

If a connection error occurs while writing data, the operation retries up to 3 times using an exponential back-off.

When using load balancing, you should be able to safely restart a database server without it immediately leading to errors being presented to the users.